sexta-feira, 2 de novembro de 2018




teorema H e categorias de Graceli



Matriz categorial de Graceli.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


Tipos, níveis, potenciais, tempo de ação [categorias de Graceli], temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.
trans-intermecânica de TUNELAMENTO no sistema categorial de Graceli.

EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

h e = quantum index and speed of light.

[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


EPG = GRACELI POTENTIAL STATUS.

[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG]..



X
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl



 dH/dt ≤ 0 
X
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


,
X
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl

X
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl

O Tempo na Termodinâmica.

Neste verbete, abordaremos a questão de reversibilidade ou irreversibilidade do tempo, questão essa que só foi evidenciada por ocasião da Segunda Lei da Termodinâmica, que surge a partir do estudo das máquinas a vapor ou máquinas térmicas, e que tem como base a expansão térmica dos gases (ver verbetes nesta série). .    
                   A expansão térmica dos gases já era conhecida no mundo antigo. Porém, sua primeira aplicação prática deve-se ao físico francês Denis Papin (1647-1712) ao descobrir, em 1698, que a água fervida ao ser colocada em um tubo oco faria com que o vapor resultante deslocasse uma espécie de êmbulo colocado na outra extremidade desse tubo. Nesse mesmo ano de 1698, o engenheiro inglês Thomas Savery (c.1650-1715) inventou um dispositivo que produzia vácuo pela condensação do vapor d´água. Assim, quando adaptado à extremidade de um tubo longo, este poderia aspirar água de qualquer reservatório. No entanto, essa máquina a vapor apresentava muitas limitações, principalmente quando eram utilizadas altas pressões (acima de 8 a 10 atmosferas).
                   A máquina a vapor de Savery foi aperfeiçoada pelo engenheiro inglês Thomas Newcomen (1663-1729), em 1705, ao construir cilindros nos quais os êmbulos (pistões) se ajustavam. O movimento de vaivém desses pistões devia-se, respectivamente, à expansão e ao resfriamento do vapor. No entanto, como a água destinada a condensar o vapor esfriava também os pistões, desse modo, grande quantidade de calor era desperdiçada. Para contornar essa dificuldade, o engenheiro escocês James Watt (1736-1819), em 1765, inventou o condensador, separado, para esfriar o vapor sem, contudo, esfriar os pistões.
                   Em verbete desta série, vimos que a eficiência das máquinas a vapor é bastante baixa, cerca de 5% a 7%; em vista disso, o físico francês Nicolas Leonard Sadi Carnot (1796-1832) procurou melhorá-la. Assim, em 1824, em seu livro Réflexions sur la Puissance Motrice du Feu et sur les Machines Propres à Developper cette Puissance (“Reflexões sobre a Potência Motriz do Fogo e sobre as Máquinas próprias para Desenvolver essa Potência”), Carnot descreveu uma máquina ideal sem atrito, que realiza um ciclo completo de modo que a substância usada – vapor ou ar atmosférico – é levada de volta ao seu estado inicial. Carnot concluiu seu estudo dizendo: - A potência motriz do calor é independente dos agentes empregados para produzi-la e sua quantidade só depende das temperaturas inicial e final desses agentes.
                   A máquina de Carnot foi estudada pelo físico francês Emile Clapeyron (1799-1864), em 1834, ocasião em que o ciclo de Carnot foi pela primeira vez representado graficamente [hoje esse gráfico é conhecido como diagrama P-V  pressão-volume)] por duas transformações adiabáticas (quantidade de calor constante) e duas isotérmicas (temperatura constante). Com isso, Clapeyron demonstrou que a produção de trabalho nessa máquina dependia somente da diferença de temperatura entre os reservatórios térmicos (fontes quente e fria) considerados por Carnot. Em 1848, o físico inglês William Thomson, Lord Kelvin (1824-1907) estudando o ciclo de Carnot-Clapeyron, propôs o conceito de temperatura absoluta (T). Por sua vez, em 1850, o físico alemão Rudolf Emmanuel Clausius (1822-1888) demonstrou que a produção de trabalho nas máquinas térmicas não resultava simplesmente do deslocamento do calor da fonte quente para a fonte fria e sim, também, por consumo de calor. Assim, escreveu que: - É impossível realizar um processo cíclico cujo efeito único seja transferir calor de um corpo mais frio para um mais quente. Esta afirmação ficou mais tarde conhecida como a Segunda Lei da Termodinâmica. Note que esta lei foi reinterpretada por Kelvin, em 1851, no trabalho intitulado On the Dynamical Theory of Heat (“Sobre a Teoria Dinâmica do Calor”), por intermédio da tese de irreversibilidade e dissipação do calor.
                   Ao formular sua lei, Clausius preocupou-se, basicamente, com a direcionalidade do fluxo do calor, isto é, com a tendência do calor fluir de uma fonte quente para uma fonte fria. Assim, a partir de 1854, começou a pensar que a transformação de calor em alta temperatura para calor em baixa temperatura deveriam ser equivalentes. Em vista disso, introduziu o conceito de valor de equivalência de uma transformação térmica e que era medido pela relação entre a quantidade de calor (ΔQ) e a temperatura (T) na qual ocorre essa transformação. Por intermédio desse novo conceito físico [o qual denominou de entropia (S) (do grego que significação transformação), em 1865], pôde Clausius fazer a distinção entre processos reversíveis e irreversíveis. É oportuno registrar que o engenheiro escocês William John Macquorn Rankine (1820-1872) propôs um conceito similar a esse de Clausius, para o qual denominou de função termodinâmica, porém não o aplicou a processos irreversíveis [P. M. Harman, Energy, Force, and Matter (Cambridge University Press, 1985)]. Desse modo, considerando um ciclo qualquer como uma sucessão de ciclos infinitesimais de Carnot, ainda em 1865, Clausius apresentou seu célebre Teorema:

,

onde o sinal de menor (<) ocorre para as transformações irreversíveis e o sinal de igualdade (=), para as reversíveis. [Note que esse Teorema de Clausius foi generalizado pelo físico, matemático e filósofo Jules Henri Poincaré (1854-1912), conforme se pode ver em seu livro Thermodinamique (“Termodinâmica”), de 1908].                  Adotando o termo energia (que havia sido universalizado por Kelvin e por Rankine), Clausius resumiu, ainda em 1865, o resultado de suas pesquisas sobre a teoria do calor, nas hoje conhecidas: Primeira Lei da Termodinâmica – A energia (E) do Universo é constanteSegunda Lei da Termodinâmica – A entropia (S) do Universo tende para um máximo.
                   Considerando que o calor tinha uma base mecânica, os físicos passaram então a explicar mecanicamente as grandezas físicas (temperatura T, entropia S e quantidade de calor ΔQ) inerentes aos processos caloríficos, bem como distinguindo, também mecanicamente, os processos reversíveis e irreversíveis. Desse modo, institucionalizou-se a disciplina Termodinâmica. Assim, entre 1868 e 1872, o físico austríaco Ludwig Edward Boltzmann (1844-1906) realizou vários trabalhos usando a visão mecânica do calor. Nesses trabalhos, além de encontrar uma expressão analítica para S, ele definiu, em 1872, a função H(t) = ∫∫∫f(, t) log f(, t) d3, que satisfaz á expressão dH/dt ≤ 0 – o célebre Teorema H– cujo principal resultado é o de que a entropia cresce nos processos irreversíveis. Note que f(, t) d3representa o número de moléculas que tem a velocidade () entre  e  + d. [Sílvio Roberto de Azevedo Salinas, Cadernos de História e Filosofia da Ciência 3, p. 28, CLEHC/UNICAMP (1982); Kerson Huang, Statistical Mechanics (John Wiley and Sons, Inc., 1963); Ryogo Kubo, Statistical Mechanics, (North-Holland Publishing Co., 1971).
                   No entanto, conforme vimos em verbete desta série, em 1876, o químico austríaco Johann Joseph Loschmidt (1821-1895) criticou os trabalhos de Boltzmann, usando o seguinte argumento (mais tarde denominado paradoxo da irreversibilidade): - Sendo as leis da Mecânica reversíveis no tempo (de acordo com a Segunda Lei de Newtonelas, portanto, não poderão descrever uma função tipo entropia e nem os processos irreversíveis que ela descreve. Para responder a esse argumento, Boltzmann adotou então a interpretação probabilística da entropia, apresentando em 1877, aseguinte expressão: S = k n Ω, onde k foi mais tarde chamada de constante de Boltzmann e Ω é o número de configurações possíveis de um sistema. [Enrico Fermi, Termodinámica, (Livraria Almedina, 1973)]. Essa equação significa que a entropia mede a desordem molecular. A partir daí, a disciplina Termodinâmica deu lugar à Mecânica Estatística e a Segunda Lei da Termodinâmica passou a ser escrita como: - A entropia do Universo cresce, que passou a significar que o tempo é irreversível e que, portanto, não se pode inverter a flecha do tempo, expressão essa que foi cunhada pelo astrônomo, físico e matemático inglês Sir Arthur Stanley Eddington (1882-1944), apresentada em seu livro The Nature of the Physical World (MacMillan, 1928). A irreversibilidade temporal tratada acima traduz o aspecto do tempo termodinâmico.


Em 1850 (Annalen der Physik und Chimie 79, p. 368; 500), o físico alemão Rudolf Julius Emmanuel Clausius (1822-1888) afirmou que a produção de trabalho nas máquinas térmicas não resultava meramente do deslocamento do calor da fonte quente para a fonte fria e sim, também, por consumo de calor. Afirmou mais ainda que o calor poderia ser produzido às expensas de trabalho mecânico e que, portanto, era impossível realizar um processo cíclico cujo único efeito seja o de transferir calor de um corpo mais frio para um corpo mais quente. Essas afirmações se constituem na primeira idéia do que hoje se conhece como Segunda Lei da Termodinâmica. Em 1851 (Transactions of the Royal Society of Edinburgh 20, p. 261), o físico inglês William Thomson, Lord Kelvin (1824-1907) apresentou uma nova versão para essa lei da Termodinâmica, baseada na tese da irreversibilidade e dissipação do calor. Em 1854 (Annalen der Physik und Chimie 93, p. 481), Clausius começou a pensar que a transformação de calor em trabalho e a transformação de calor em alta temperatura para calor em baixa temperatura poderia ser equivalentes. Em vista disso, propôs que o fluxo de calor de um corpo quente para um corpo frio (com a conseqüente transformação de calor em trabalho) deveria ser compensado pela conservação de trabalho em calor, de modo que o calor deveria fluir do corpo frio para o corpo quente. Desse modo, Clausius introduziu o conceito de valor de equivalência de uma transformação térmica e que era medido pela relação entre a quantidade de calor () e a temperatura (T) na qual ocorre a transformação. Por intermédio desse novo conceito físico, Clausius pôde fazer a distinção entre processos reversíveis e irreversíveis. Assim, assumindo arbitrariamente que a transformação de calor de um corpo quente para um frio tivesse um "valor de equivalência" positivo, ele apresentou uma nova versão para a Segunda Lei da TermodinâmicaA soma algébrica de todas as transformações ocorrendo em um processo circular somente pode ser positiva.Foi somente em 1865 (Annalen der Physik und Chimie 125, p. 353) que Clausius propôs o termo entropia (do grego, que significa transformação), denotando-o por S, em lugar do termo valor de equivalência. Nesse trabalho, ao retomar suas idéias sobre esse novo conceito físico, Clausius considerou um ciclo qualquer como constituído de uma sucessão de ciclos infinitesimais de Carnot e chegou ao seu célebre teorema:

onde o sinal de menor (<) ocorre para as transformações irreversíveis e o sinal de igualdade (=), para as reversíveis. Ainda nesse trabalho, Clausius resumiu as Leis da Termodinâmica nas expressões: Primeira Lei da Termodinâmica A energia do Universo é constanteSegunda Lei da Termodinâmica - A entropia do Universo tende para um máximo.
É oportuno destacar que, em 1824, o físico francês Nicolas Sadi Carnot (1796-1832) publicou seu famoso livro Reflexions sur la Puissance Motrice du Feu et sur les Machines Propres à Developper cette Puissance, no qual descreveu sua máquina de calor como uma máquina ideal sem atrito, que realiza um ciclo completo, de modo que a substância usada - vapor, gás ou outra qualquer - é levada de volta ao seu estado inicial. Esse ciclo, mais tarde conhecido como ciclo de Carnot, é composto de duas transformações adiabáticas (troca de calor constante) e duas transformações isotérmicas (temperatura constante).
O caráter probabilístico da Segunda Lei da Termodinâmica foi sugerido pelo físico e matemático escocês James Clerk Maxwell (1831-1879) em uma carta que escreveu, em dezembro de 1867, para o físico inglês Peter Guthrie Tait (1831-1901). Nessa carta, apresentou o seguinte exemplo. Seja um recipiente contendo um gás a uma temperatura fixa; suponhamos que no meio desse recipiente exista uma parede contendo uma janela que poderá ser manejada por um doorkeep very inteligent and exceedingly quick microscopic eyes ("porteiro muito inteligente e que tem olhos microscópicos e extremamente rápidos"). Este porteiro deixava passar, através dessa janela, partículas que tivessem velocidades altas e impediria a passagem das que tivessem velocidades baixas, já que, segundo sua distribuição de velocidades (distribuição essa que Maxwell havia proposto em 1860), num gás em equilíbrio, as partículas se distribuem com as mais variadas velocidades. Desse modo e por ação desse "demônio", depois de um certo tempo, um lado do recipiente estaria mais quente que o outro, mostrando, assim, que o fluxo de calor poderia ser em dois sentidos, e não em apenas um, conforme indicava aquela Lei Termodinâmica. Registre-se que, conforme nos conta o físico e historiador da ciência, o holandês Abraham Pais (1918-2000) em seu livro 'Subtle is the Lord...' The Science and the Life of Albert Einstein (Oxford University Press, 1983), quando Tait mostrou a carta para Kelvin, este chamou de demônio de Maxwell ao "porteiro" considerado por Maxwell. É oportuno também registrar que esse "demônio" foi "exorcizado", em 1951 (Journal of Applied Physics 22, p. 334), quando o físico francês Léon Nicolas Brillouin (1889-1969) demonstrou que o decréscimo de entropia resultante das ações do "demônio de Maxwell" poderia ser superado pelo aumento da entropia na escolha entre as velocidades baixas e altas.
Um outro aspecto da necessidade do raciocínio probabilístico para o entendimento da entropia foi apresentado pelo físico e químico austríaco Johann Joseph Loschmidt (1821-1895), em 1876 (Sitzungsberichte der Akademie der Wissenschaften zu Wien 73, p. 128; 336), por meio do seguinte argumento - mais tarde denominado de paradoxo da irreversibilidadeSendo as leis da Mecânica reversíveis no tempo (por exemplo, no caso unidimensional), , não poderão, portanto, descrever uma função do tipo entropia e os processos irreversíveis que ela descreve. Por exemplo, argüiu Loschmidt, em todo processo no qual a entropia cresce, existe um processo análogo, com as velocidades das partículas, em que a entropia diminui, significando isso dizer que o aumento ou a diminuição da entropia depende apenas das condições iniciais do sistema físico em consideração. Tal afirmação ia de encontro a Segunda Lei da Termodinâmica. Note-se que um interessante estudo sobre o paradoxo da irreversibilidade pode ser encontrado no artigo escrito pelos historiadores da ciência, os brasileiros S. B. Volchan e Antonio Augusto Passos Videira, Revista Brasileira de Ensino de Física 23, p. 19 (2001).
O raciocínio probabilístico foi introduzido formalmente na Segunda Lei da Termodinâmica, pelo físico austríaco Ludwig Edward Boltzmann (1844-1906). Vejamos como. Em 1866 (Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften zu Wien 53, p 195), Boltzmann formulou um modelo mecânico no qual considerou que as partículas de um gás se moviam em órbitas periódicas e, com isso, deduziu uma expressão analítica para a entropia que dependia do período das partículas em suas órbitas, e que aumentava com o tempo. Contudo, esse modelo de Boltzmann foi muito criticado, inclusive por Clausius. Em vista disso, em 1868 (Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften zu Wien 58, p. 517), Boltzmann apresentou um novo tratamento (ainda mecânico) para a entropia ao admitir que em um gás ideal, composto de um grande número (N) de moléculas, as interações entre elas poderiam ser negligenciadas. Isso significava considerar que as colisões entre as moléculas eram binárias e supor que suas velocidades são não-correlacionadas [hipótese essa conhecida como caos molecular("Stosszahlansatz")] e que já havia sido considerada por Maxwell e Clausius. Assim, para Boltzmann, a energia total (E) nas N moléculas é constante e pode ser distribuída de diversas maneiras, nos chamadosmicroestados.
Apesar dessa nova tentativa de Boltzmann, esse seu novo modelo mecânico não explicou o paradoxo da irreversibilidade que Loschmidt havia apresentado em 1876, conforme vimos acima. Em vista disso, Boltzmann passou a considerar o raciocínio probabilístico, em trabalhos que publicou em 1877 (Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften zu Wien 75; 76, p. 75; 373). Nesses trabalhos, considerou que todos os "microestados" [aos quais denominou de complexions (configurações)] têm a mesma probabilidade P. Além disso, chamou de macroestado ao estado no qual uma molécula específica tem energia . Desse modo, concluiu que a  de um "macroestado" é proporcional ao número de microestados nos quais a energia remanescente  é distribuída entre as N - 1 moléculas restantes, isto é: . É oportuno registrar que foi o próprio Boltzmann que, em 1876, generalizou a lei de distribuição de velocidades Maxwelliana, ao considerar a energia total (energia cinética mais energia potencial), e não a energia cinética, como admitido por Maxwell, no argumento da exponencial (vide expressão anterior) representativa daquela lei.
Boltzmann considerou o número W (inicial da palavra alemã Wahrscheinlichkeit, que significa probabilidade) de configurações ('complexions') distintas de um macroestado envolvendo suas N () moléculas, onde no representa o número de moléculas com energia(), n1 representa o número de moléculas com energia n2 representa o número de moléculas com energia(), ... e nr com energia () onde e é uma constante positiva e  e, pelo princípio da conservação do número de partículas e da energia, deveremos ter:  e . Para calcular W, Boltzmann usou o raciocínio combinatório, ou seja, considerou que:  e, desse modo, usando a hipótese das probabilidades iguais, escreveu que a probabilidade  de ocorrência de uma configuração pertencente ao conjunto definido pelos "números de ocupação" () é dado por: P = CW, onde C é uma constante. Ora, como a entropia do sistema considerado é igual a soma das entropias de seus componentes, como as probabilidades das 'complexions' do mesmo sistema devem ser multiplicadas, e considerando que o logaritmo do produto de números é igual a soma dos logaritmos dos fatores, é fácil ver como Boltzmann chegou à sua célebre expressão da entropia: , onde k é uma constante. É oportuno observar que, embora essa expressão esteja gravada no túmulo de Boltzmann, no Cemitério Central de Viena, ela só foi escrita dessa maneira pelo físico alemão Max Karl Ernst Planck (1858-1947; PNF, 1918) que, por sua vez, introduziu k, denominada por ele de constante de Boltzmann, pela primeira vez em sua célebre fórmula de 1900, sobre a distribuição de equilíbrio térmico da radiação (de freqüência v) do corpo negro, que considera a energia quantizada, ou seja: .


Teorema H

Origem: Wikipédia, a enciclopédia livre.
Saltar para a navegaçãoSaltar para a pesquisa
Neste modelo mecânico de um gás, o movimento das moléculas parece muito desordenado. Boltzmann mostrou que, assumindo que cada configuração de colisão em um gás é verdadeiramente aleatória e independente, o gás converge para a distribuição de velocidade de Maxwell, mesmo que não tenha começado dessa maneira..
Em mecânica estatística clássica, o teorema H, introduzido por Ludwig Boltzmann em 1872, descreve a tendência para diminuir a quantidade H em um gás quase-ideal de moléculas[1]. Como essa quantidade H deveria representar a entropia da termodinâmica, o teorema H foi uma demonstração inicial do poder da mecânica estatística, já que afirmava derivar a segunda lei da termodinâmica - uma declaração sobre processos fundamentalmente irreversíveis - da mecânica microscópica reversível. O teorema H é uma conseqüência natural da equação cinética derivada por Boltzmann que passou a ser conhecida como equação de Boltzmann.[2][3][4]

Definição e significado do H de Boltzmann[editar | editar código-fonte]

O valor H é determinado a partir da função f(EtdE, que é a função de distribuição de energia das moléculas no tempo t. O valor f(EtdE dE é o número de moléculas que possuem energia cinética entre E e E + dE. O próprio H é definido como
Para um gás ideal isolado (com energia total fixa e número total fixo de partículas), a função H é mínima quando as partículas possuem uma distribuição de Maxwell-Boltzmann; se as moléculas do gás ideal forem distribuídas de alguma outra maneira (por exemplo, todas com a mesma energia cinética), então o valor de H será maior. O teorema H de Boltzmann demonstra que quando as colisões entre moléculas são permitidas, essas distribuições são instáveis e tendem a procurar irreversivelmente o valor mínimo de H (para a distribuição de Maxwell-Boltzmann)

teorema H e categorias de Graceli



Matriz categorial de Graceli.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


Tipos, níveis, potenciais, tempo de ação [categorias de Graceli], temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.
trans-intermecânica de TUNELAMENTO no sistema categorial de Graceli.

EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

h e = quantum index and speed of light.

[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


EPG = GRACELI POTENTIAL STATUS.

[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG]..



X
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl



 dH/dt ≤ 0 
X
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


O Tempo na Termodinâmica.

Neste verbete, abordaremos a questão de reversibilidade ou irreversibilidade do tempo, questão essa que só foi evidenciada por ocasião da Segunda Lei da Termodinâmica, que surge a partir do estudo das máquinas a vapor ou máquinas térmicas, e que tem como base a expansão térmica dos gases (ver verbetes nesta série). .    
                   A expansão térmica dos gases já era conhecida no mundo antigo. Porém, sua primeira aplicação prática deve-se ao físico francês Denis Papin (1647-1712) ao descobrir, em 1698, que a água fervida ao ser colocada em um tubo oco faria com que o vapor resultante deslocasse uma espécie de êmbulo colocado na outra extremidade desse tubo. Nesse mesmo ano de 1698, o engenheiro inglês Thomas Savery (c.1650-1715) inventou um dispositivo que produzia vácuo pela condensação do vapor d´água. Assim, quando adaptado à extremidade de um tubo longo, este poderia aspirar água de qualquer reservatório. No entanto, essa máquina a vapor apresentava muitas limitações, principalmente quando eram utilizadas altas pressões (acima de 8 a 10 atmosferas).
                   A máquina a vapor de Savery foi aperfeiçoada pelo engenheiro inglês Thomas Newcomen (1663-1729), em 1705, ao construir cilindros nos quais os êmbulos (pistões) se ajustavam. O movimento de vaivém desses pistões devia-se, respectivamente, à expansão e ao resfriamento do vapor. No entanto, como a água destinada a condensar o vapor esfriava também os pistões, desse modo, grande quantidade de calor era desperdiçada. Para contornar essa dificuldade, o engenheiro escocês James Watt (1736-1819), em 1765, inventou o condensador, separado, para esfriar o vapor sem, contudo, esfriar os pistões.
                   Em verbete desta série, vimos que a eficiência das máquinas a vapor é bastante baixa, cerca de 5% a 7%; em vista disso, o físico francês Nicolas Leonard Sadi Carnot (1796-1832) procurou melhorá-la. Assim, em 1824, em seu livro Réflexions sur la Puissance Motrice du Feu et sur les Machines Propres à Developper cette Puissance (“Reflexões sobre a Potência Motriz do Fogo e sobre as Máquinas próprias para Desenvolver essa Potência”), Carnot descreveu uma máquina ideal sem atrito, que realiza um ciclo completo de modo que a substância usada – vapor ou ar atmosférico – é levada de volta ao seu estado inicial. Carnot concluiu seu estudo dizendo: - A potência motriz do calor é independente dos agentes empregados para produzi-la e sua quantidade só depende das temperaturas inicial e final desses agentes.
                   A máquina de Carnot foi estudada pelo físico francês Emile Clapeyron (1799-1864), em 1834, ocasião em que o ciclo de Carnot foi pela primeira vez representado graficamente [hoje esse gráfico é conhecido como diagrama P-V  pressão-volume)] por duas transformações adiabáticas (quantidade de calor constante) e duas isotérmicas (temperatura constante). Com isso, Clapeyron demonstrou que a produção de trabalho nessa máquina dependia somente da diferença de temperatura entre os reservatórios térmicos (fontes quente e fria) considerados por Carnot. Em 1848, o físico inglês William Thomson, Lord Kelvin (1824-1907) estudando o ciclo de Carnot-Clapeyron, propôs o conceito de temperatura absoluta (T). Por sua vez, em 1850, o físico alemão Rudolf Emmanuel Clausius (1822-1888) demonstrou que a produção de trabalho nas máquinas térmicas não resultava simplesmente do deslocamento do calor da fonte quente para a fonte fria e sim, também, por consumo de calor. Assim, escreveu que: - É impossível realizar um processo cíclico cujo efeito único seja transferir calor de um corpo mais frio para um mais quente. Esta afirmação ficou mais tarde conhecida como a Segunda Lei da Termodinâmica. Note que esta lei foi reinterpretada por Kelvin, em 1851, no trabalho intitulado On the Dynamical Theory of Heat (“Sobre a Teoria Dinâmica do Calor”), por intermédio da tese de irreversibilidade e dissipação do calor.
                   Ao formular sua lei, Clausius preocupou-se, basicamente, com a direcionalidade do fluxo do calor, isto é, com a tendência do calor fluir de uma fonte quente para uma fonte fria. Assim, a partir de 1854, começou a pensar que a transformação de calor em alta temperatura para calor em baixa temperatura deveriam ser equivalentes. Em vista disso, introduziu o conceito de valor de equivalência de uma transformação térmica e que era medido pela relação entre a quantidade de calor (ΔQ) e a temperatura (T) na qual ocorre essa transformação. Por intermédio desse novo conceito físico [o qual denominou de entropia (S) (do grego que significação transformação), em 1865], pôde Clausius fazer a distinção entre processos reversíveis e irreversíveis. É oportuno registrar que o engenheiro escocês William John Macquorn Rankine (1820-1872) propôs um conceito similar a esse de Clausius, para o qual denominou de função termodinâmica, porém não o aplicou a processos irreversíveis [P. M. Harman, Energy, Force, and Matter (Cambridge University Press, 1985)]. Desse modo, considerando um ciclo qualquer como uma sucessão de ciclos infinitesimais de Carnot, ainda em 1865, Clausius apresentou seu célebre Teorema:

,

onde o sinal de menor (<) ocorre para as transformações irreversíveis e o sinal de igualdade (=), para as reversíveis. [Note que esse Teorema de Clausius foi generalizado pelo físico, matemático e filósofo Jules Henri Poincaré (1854-1912), conforme se pode ver em seu livro Thermodinamique (“Termodinâmica”), de 1908].                  Adotando o termo energia (que havia sido universalizado por Kelvin e por Rankine), Clausius resumiu, ainda em 1865, o resultado de suas pesquisas sobre a teoria do calor, nas hoje conhecidas: Primeira Lei da Termodinâmica – A energia (E) do Universo é constanteSegunda Lei da Termodinâmica – A entropia (S) do Universo tende para um máximo.
                   Considerando que o calor tinha uma base mecânica, os físicos passaram então a explicar mecanicamente as grandezas físicas (temperatura T, entropia S e quantidade de calor ΔQ) inerentes aos processos caloríficos, bem como distinguindo, também mecanicamente, os processos reversíveis e irreversíveis. Desse modo, institucionalizou-se a disciplina Termodinâmica. Assim, entre 1868 e 1872, o físico austríaco Ludwig Edward Boltzmann (1844-1906) realizou vários trabalhos usando a visão mecânica do calor. Nesses trabalhos, além de encontrar uma expressão analítica para S, ele definiu, em 1872, a função H(t) = ∫∫∫f(, t) log f(, t) d3, que satisfaz á expressão dH/dt ≤ 0 – o célebre Teorema H– cujo principal resultado é o de que a entropia cresce nos processos irreversíveis. Note que f(, t) d3representa o número de moléculas que tem a velocidade () entre  e  + d. [Sílvio Roberto de Azevedo Salinas, Cadernos de História e Filosofia da Ciência 3, p. 28, CLEHC/UNICAMP (1982); Kerson Huang, Statistical Mechanics (John Wiley and Sons, Inc., 1963); Ryogo Kubo, Statistical Mechanics, (North-Holland Publishing Co., 1971).
                   No entanto, conforme vimos em verbete desta série, em 1876, o químico austríaco Johann Joseph Loschmidt (1821-1895) criticou os trabalhos de Boltzmann, usando o seguinte argumento (mais tarde denominado paradoxo da irreversibilidade): - Sendo as leis da Mecânica reversíveis no tempo (de acordo com a Segunda Lei de Newtonelas, portanto, não poderão descrever uma função tipo entropia e nem os processos irreversíveis que ela descreve. Para responder a esse argumento, Boltzmann adotou então a interpretação probabilística da entropia, apresentando em 1877, aseguinte expressão: S = k n Ω, onde k foi mais tarde chamada de constante de Boltzmann e Ω é o número de configurações possíveis de um sistema. [Enrico Fermi, Termodinámica, (Livraria Almedina, 1973)]. Essa equação significa que a entropia mede a desordem molecular. A partir daí, a disciplina Termodinâmica deu lugar à Mecânica Estatística e a Segunda Lei da Termodinâmica passou a ser escrita como: - A entropia do Universo cresce, que passou a significar que o tempo é irreversível e que, portanto, não se pode inverter a flecha do tempo, expressão essa que foi cunhada pelo astrônomo, físico e matemático inglês Sir Arthur Stanley Eddington (1882-1944), apresentada em seu livro The Nature of the Physical World (MacMillan, 1928). A irreversibilidade temporal tratada acima traduz o aspecto do tempo termodinâmico.



Teorema H

Origem: Wikipédia, a enciclopédia livre.
Saltar para a navegaçãoSaltar para a pesquisa
Neste modelo mecânico de um gás, o movimento das moléculas parece muito desordenado. Boltzmann mostrou que, assumindo que cada configuração de colisão em um gás é verdadeiramente aleatória e independente, o gás converge para a distribuição de velocidade de Maxwell, mesmo que não tenha começado dessa maneira..
Em mecânica estatística clássica, o teorema H, introduzido por Ludwig Boltzmann em 1872, descreve a tendência para diminuir a quantidade H em um gás quase-ideal de moléculas[1]. Como essa quantidade H deveria representar a entropia da termodinâmica, o teorema H foi uma demonstração inicial do poder da mecânica estatística, já que afirmava derivar a segunda lei da termodinâmica - uma declaração sobre processos fundamentalmente irreversíveis - da mecânica microscópica reversível. O teorema H é uma conseqüência natural da equação cinética derivada por Boltzmann que passou a ser conhecida como equação de Boltzmann.[2][3][4]

Definição e significado do H de Boltzmann[editar | editar código-fonte]

O valor H é determinado a partir da função f(EtdE, que é a função de distribuição de energia das moléculas no tempo t. O valor f(EtdE dE é o número de moléculas que possuem energia cinética entre E e E + dE. O próprio H é definido como
Para um gás ideal isolado (com energia total fixa e número total fixo de partículas), a função H é mínima quando as partículas possuem uma distribuição de Maxwell-Boltzmann; se as moléculas do gás ideal forem distribuídas de alguma outra maneira (por exemplo, todas com a mesma energia cinética), então o valor de H será maior. O teorema H de Boltzmann demonstra que quando as colisões entre moléculas são permitidas, essas distribuições são instáveis e tendem a procurar irreversivelmente o valor mínimo de H (para a distribuição de Maxwell-Boltzmann)