sexta-feira, 2 de novembro de 2018


teorema H e categorias de Graceli



Matriz categorial de Graceli.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


Tipos, níveis, potenciais, tempo de ação [categorias de Graceli], temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.
trans-intermecânica de TUNELAMENTO no sistema categorial de Graceli.

EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

h e = quantum index and speed of light.

[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


EPG = GRACELI POTENTIAL STATUS.

[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG]..



X
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl



 dH/dt ≤ 0 
X
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


O Tempo na Termodinâmica.

Neste verbete, abordaremos a questão de reversibilidade ou irreversibilidade do tempo, questão essa que só foi evidenciada por ocasião da Segunda Lei da Termodinâmica, que surge a partir do estudo das máquinas a vapor ou máquinas térmicas, e que tem como base a expansão térmica dos gases (ver verbetes nesta série). .    
                   A expansão térmica dos gases já era conhecida no mundo antigo. Porém, sua primeira aplicação prática deve-se ao físico francês Denis Papin (1647-1712) ao descobrir, em 1698, que a água fervida ao ser colocada em um tubo oco faria com que o vapor resultante deslocasse uma espécie de êmbulo colocado na outra extremidade desse tubo. Nesse mesmo ano de 1698, o engenheiro inglês Thomas Savery (c.1650-1715) inventou um dispositivo que produzia vácuo pela condensação do vapor d´água. Assim, quando adaptado à extremidade de um tubo longo, este poderia aspirar água de qualquer reservatório. No entanto, essa máquina a vapor apresentava muitas limitações, principalmente quando eram utilizadas altas pressões (acima de 8 a 10 atmosferas).
                   A máquina a vapor de Savery foi aperfeiçoada pelo engenheiro inglês Thomas Newcomen (1663-1729), em 1705, ao construir cilindros nos quais os êmbulos (pistões) se ajustavam. O movimento de vaivém desses pistões devia-se, respectivamente, à expansão e ao resfriamento do vapor. No entanto, como a água destinada a condensar o vapor esfriava também os pistões, desse modo, grande quantidade de calor era desperdiçada. Para contornar essa dificuldade, o engenheiro escocês James Watt (1736-1819), em 1765, inventou o condensador, separado, para esfriar o vapor sem, contudo, esfriar os pistões.
                   Em verbete desta série, vimos que a eficiência das máquinas a vapor é bastante baixa, cerca de 5% a 7%; em vista disso, o físico francês Nicolas Leonard Sadi Carnot (1796-1832) procurou melhorá-la. Assim, em 1824, em seu livro Réflexions sur la Puissance Motrice du Feu et sur les Machines Propres à Developper cette Puissance (“Reflexões sobre a Potência Motriz do Fogo e sobre as Máquinas próprias para Desenvolver essa Potência”), Carnot descreveu uma máquina ideal sem atrito, que realiza um ciclo completo de modo que a substância usada – vapor ou ar atmosférico – é levada de volta ao seu estado inicial. Carnot concluiu seu estudo dizendo: - A potência motriz do calor é independente dos agentes empregados para produzi-la e sua quantidade só depende das temperaturas inicial e final desses agentes.
                   A máquina de Carnot foi estudada pelo físico francês Emile Clapeyron (1799-1864), em 1834, ocasião em que o ciclo de Carnot foi pela primeira vez representado graficamente [hoje esse gráfico é conhecido como diagrama P-V  pressão-volume)] por duas transformações adiabáticas (quantidade de calor constante) e duas isotérmicas (temperatura constante). Com isso, Clapeyron demonstrou que a produção de trabalho nessa máquina dependia somente da diferença de temperatura entre os reservatórios térmicos (fontes quente e fria) considerados por Carnot. Em 1848, o físico inglês William Thomson, Lord Kelvin (1824-1907) estudando o ciclo de Carnot-Clapeyron, propôs o conceito de temperatura absoluta (T). Por sua vez, em 1850, o físico alemão Rudolf Emmanuel Clausius (1822-1888) demonstrou que a produção de trabalho nas máquinas térmicas não resultava simplesmente do deslocamento do calor da fonte quente para a fonte fria e sim, também, por consumo de calor. Assim, escreveu que: - É impossível realizar um processo cíclico cujo efeito único seja transferir calor de um corpo mais frio para um mais quente. Esta afirmação ficou mais tarde conhecida como a Segunda Lei da Termodinâmica. Note que esta lei foi reinterpretada por Kelvin, em 1851, no trabalho intitulado On the Dynamical Theory of Heat (“Sobre a Teoria Dinâmica do Calor”), por intermédio da tese de irreversibilidade e dissipação do calor.
                   Ao formular sua lei, Clausius preocupou-se, basicamente, com a direcionalidade do fluxo do calor, isto é, com a tendência do calor fluir de uma fonte quente para uma fonte fria. Assim, a partir de 1854, começou a pensar que a transformação de calor em alta temperatura para calor em baixa temperatura deveriam ser equivalentes. Em vista disso, introduziu o conceito de valor de equivalência de uma transformação térmica e que era medido pela relação entre a quantidade de calor (ΔQ) e a temperatura (T) na qual ocorre essa transformação. Por intermédio desse novo conceito físico [o qual denominou de entropia (S) (do grego que significação transformação), em 1865], pôde Clausius fazer a distinção entre processos reversíveis e irreversíveis. É oportuno registrar que o engenheiro escocês William John Macquorn Rankine (1820-1872) propôs um conceito similar a esse de Clausius, para o qual denominou de função termodinâmica, porém não o aplicou a processos irreversíveis [P. M. Harman, Energy, Force, and Matter (Cambridge University Press, 1985)]. Desse modo, considerando um ciclo qualquer como uma sucessão de ciclos infinitesimais de Carnot, ainda em 1865, Clausius apresentou seu célebre Teorema:

,

onde o sinal de menor (<) ocorre para as transformações irreversíveis e o sinal de igualdade (=), para as reversíveis. [Note que esse Teorema de Clausius foi generalizado pelo físico, matemático e filósofo Jules Henri Poincaré (1854-1912), conforme se pode ver em seu livro Thermodinamique (“Termodinâmica”), de 1908].                  Adotando o termo energia (que havia sido universalizado por Kelvin e por Rankine), Clausius resumiu, ainda em 1865, o resultado de suas pesquisas sobre a teoria do calor, nas hoje conhecidas: Primeira Lei da Termodinâmica – A energia (E) do Universo é constanteSegunda Lei da Termodinâmica – A entropia (S) do Universo tende para um máximo.
                   Considerando que o calor tinha uma base mecânica, os físicos passaram então a explicar mecanicamente as grandezas físicas (temperatura T, entropia S e quantidade de calor ΔQ) inerentes aos processos caloríficos, bem como distinguindo, também mecanicamente, os processos reversíveis e irreversíveis. Desse modo, institucionalizou-se a disciplina Termodinâmica. Assim, entre 1868 e 1872, o físico austríaco Ludwig Edward Boltzmann (1844-1906) realizou vários trabalhos usando a visão mecânica do calor. Nesses trabalhos, além de encontrar uma expressão analítica para S, ele definiu, em 1872, a função H(t) = ∫∫∫f(, t) log f(, t) d3, que satisfaz á expressão dH/dt ≤ 0 – o célebre Teorema H– cujo principal resultado é o de que a entropia cresce nos processos irreversíveis. Note que f(, t) d3representa o número de moléculas que tem a velocidade () entre  e  + d. [Sílvio Roberto de Azevedo Salinas, Cadernos de História e Filosofia da Ciência 3, p. 28, CLEHC/UNICAMP (1982); Kerson Huang, Statistical Mechanics (John Wiley and Sons, Inc., 1963); Ryogo Kubo, Statistical Mechanics, (North-Holland Publishing Co., 1971).
                   No entanto, conforme vimos em verbete desta série, em 1876, o químico austríaco Johann Joseph Loschmidt (1821-1895) criticou os trabalhos de Boltzmann, usando o seguinte argumento (mais tarde denominado paradoxo da irreversibilidade): - Sendo as leis da Mecânica reversíveis no tempo (de acordo com a Segunda Lei de Newtonelas, portanto, não poderão descrever uma função tipo entropia e nem os processos irreversíveis que ela descreve. Para responder a esse argumento, Boltzmann adotou então a interpretação probabilística da entropia, apresentando em 1877, aseguinte expressão: S = k n Ω, onde k foi mais tarde chamada de constante de Boltzmann e Ω é o número de configurações possíveis de um sistema. [Enrico Fermi, Termodinámica, (Livraria Almedina, 1973)]. Essa equação significa que a entropia mede a desordem molecular. A partir daí, a disciplina Termodinâmica deu lugar à Mecânica Estatística e a Segunda Lei da Termodinâmica passou a ser escrita como: - A entropia do Universo cresce, que passou a significar que o tempo é irreversível e que, portanto, não se pode inverter a flecha do tempo, expressão essa que foi cunhada pelo astrônomo, físico e matemático inglês Sir Arthur Stanley Eddington (1882-1944), apresentada em seu livro The Nature of the Physical World (MacMillan, 1928). A irreversibilidade temporal tratada acima traduz o aspecto do tempo termodinâmico.



Teorema H

Origem: Wikipédia, a enciclopédia livre.
Saltar para a navegaçãoSaltar para a pesquisa
Neste modelo mecânico de um gás, o movimento das moléculas parece muito desordenado. Boltzmann mostrou que, assumindo que cada configuração de colisão em um gás é verdadeiramente aleatória e independente, o gás converge para a distribuição de velocidade de Maxwell, mesmo que não tenha começado dessa maneira..
Em mecânica estatística clássica, o teorema H, introduzido por Ludwig Boltzmann em 1872, descreve a tendência para diminuir a quantidade H em um gás quase-ideal de moléculas[1]. Como essa quantidade H deveria representar a entropia da termodinâmica, o teorema H foi uma demonstração inicial do poder da mecânica estatística, já que afirmava derivar a segunda lei da termodinâmica - uma declaração sobre processos fundamentalmente irreversíveis - da mecânica microscópica reversível. O teorema H é uma conseqüência natural da equação cinética derivada por Boltzmann que passou a ser conhecida como equação de Boltzmann.[2][3][4]

Definição e significado do H de Boltzmann[editar | editar código-fonte]

O valor H é determinado a partir da função f(EtdE, que é a função de distribuição de energia das moléculas no tempo t. O valor f(EtdE dE é o número de moléculas que possuem energia cinética entre E e E + dE. O próprio H é definido como
Para um gás ideal isolado (com energia total fixa e número total fixo de partículas), a função H é mínima quando as partículas possuem uma distribuição de Maxwell-Boltzmann; se as moléculas do gás ideal forem distribuídas de alguma outra maneira (por exemplo, todas com a mesma energia cinética), então o valor de H será maior. O teorema H de Boltzmann demonstra que quando as colisões entre moléculas são permitidas, essas distribuições são instáveis e tendem a procurar irreversivelmente o valor mínimo de H (para a distribuição de Maxwell-Boltzmann)

Sem comentários:

Enviar um comentário